If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-10x-744=0
a = 1; b = -10; c = -744;
Δ = b2-4ac
Δ = -102-4·1·(-744)
Δ = 3076
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3076}=\sqrt{4*769}=\sqrt{4}*\sqrt{769}=2\sqrt{769}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{769}}{2*1}=\frac{10-2\sqrt{769}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{769}}{2*1}=\frac{10+2\sqrt{769}}{2} $
| 6(3n+3)=9(6n+4)+1 | | -14=5w+4(w-8) | | 18r=-36 | | -4(3t-3)+6t=3t-5 | | 11m=24+5m | | 7x^+2=5x=8 | | X+5-4(2x-1)=-3(2-x) | | 8y=-5/4+160/8 | | 100+5x=76-3x | | -2(7x-9)+8=-14x+26 | | 35x+8=18 | | x+1/6=2x+5/6 | | -6(-6-x0)=180 | | (2x-9)(2x-9)=x+3 | | 3x=5=2 | | g÷-17=-51 | | 7x-1=53 | | 19+17n=-2n+37 | | 10(x+4)=58 | | -2x-8=-6x+12 | | x/2+x=66 | | 2x-9+6x+26=11x-31 | | 26=6(x-3)+5 | | 0.80n=n+11 | | 2x-12=8x+18 | | 2.3333333333-x=12.3 | | 5x+35=14x-100 | | 7/3-x=123/10 | | 7x+10=-1 | | 3x-4÷3+×-3÷2=7÷6 | | 1+5x=-15 | | 9=x-0.10x |